Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.646
Filtrar
1.
Open Med (Wars) ; 19(1): 20240951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623457

RESUMO

Objective: In the present study, we investigated the impact of left atrial appendage closure (LAAC) following catheter ablation (CA) on the left atrial structure and functioning of patients with paroxysmal atrial fibrillation (AF). Methods: Patients with paroxysmal AF were enrolled in this single-center prospective cohort study between April 2015 and July 2021; 353 patients received CA alone, while 93 patients received CA in combination with Watchman LAAC. We used age, gender, CHA2DS2-VASc, and HAS-BLED scores as well as other demographic variables to perform propensity score matching. Patients with paroxysmal AF were randomly assigned to the CA combined with Watchman LAAC group (combined treatment group) and the simple CA group, with 89 patients in each group. The left atrial structure, reserve, ventricular diastole, and pump functions and their changes in patients were assessed using routine Doppler echocardiography and 2D speckle tracking echocardiography over the course of a 1-year follow-up. Results: At 1-week follow-up, the reserve, ventricular diastole, and pump functions of the left atrium (LA) increased in both groups; these functions were gradually restored at the 1- to 3-month follow-up; they were close to or returned to their pre-operative levels at the 3-month follow-up; and no significant differences were found compared with the pre-operative levels at the 12-month follow-up. In the first 3 months, the reserve (Ƹ, SRs) and pump functions (SRa) in the combined treatment group decreased significantly when compared with the simple CA group, and the differences were statistically significant. Conclusion: Patients with paroxysmal AF may experience a short term, partial effect of LAAC on LA reserve and pump functions, which are gradually restored and the effect disappears by 12 months.

2.
ACS Nano ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630984

RESUMO

Perioperative neurocognitive disorder (PND) is a common complication in surgical patients. While many interventions to prevent PND have been studied, the availability of treatment methods is limited. Thus, it is crucial to delve into the mechanisms of PND, pinpoint therapeutic targets, and develop effective treatment approaches. In this study, reduced dorsal tenia tecta (DTT) neuronal activity was found to be associated with tibial fracture surgery-induced PND, indicating that a neuronal excitation-inhibition (E-I) imbalance could contribute to PND. Optogenetics in the DTT brain region was conducted using upconversion nanoparticles (UCNPs) with the ability to convert 808 nm near-infrared light to visible wavelengths, which triggered the activation of excitatory neurons with minimal damage in the DTT brain region, thus improving cognitive impairment symptoms in the PND model. Moreover, this noninvasive intervention to modulate E-I imbalance showed a positive influence on mouse behavior in the Morris water maze test, which demonstrates that UCNP-mediated optogenetics is a promising tool for the treatment of neurological imbalance disorders.

3.
Regen Biomater ; 11: rbae031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605850

RESUMO

The utilization of intracanal medicaments is an indispensable procedure in root-canal treatment. However, the conventional intracanal medicaments still need improvement regarding antimicrobial efficacy and ease of clinical operation. To address the above issues, OCT/PECT@OCT + ALK composite hydrogel characterized by programming sequential release of dual antimicrobial agents has been proposed. Thanks to the self-assemble ability of amphiphilic copolymer poly(ε-caprolactone-co-1,4,8-trioxa [4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT), dual hydrophilic and hydrophobic antimicrobial agents could be easily encapsulated in the hydrogel system and tailored for sequential drug release for a better antibiofilm effect. The hydrophilic octenidine (Octenidine dihydrochloride, OCT-HCl) is encapsulated in the hydrophilic part of hydrogel for instantaneous elevating the drug concentration through bursting release, and the hydrophobic octenidine (Octenidine, OCT) is further loaded into the PECT nanoparticles to achieve a slower and sustained-release profile. Additionally, calcium hydroxide (Ca(OH)2) was incorporated into the system and evenly dispersed among PECT nanoparticles to create an alkaline (ALK) environment, synergistically enhancing the antibiofilm effect with higher efficiency and prolonged duration. The antibiofilm effect has been demonstrated in root-canal models and apical periodontitis rats, exhibiting superior performance compared to clinically used Ca(OH)2 paste. This study demonstrates that OCT/PECT@OCT + ALK composite thermosensitive hydrogel is a potential intracanal medicament with excellent antibiofilm effect and clinical operability.

4.
Proc Natl Acad Sci U S A ; 121(15): e2309087121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557184

RESUMO

Africa carries a disproportionately high share of the global malaria burden, accounting for 94% of malaria cases and deaths worldwide in 2019. It is also a politically unstable region and the most vulnerable continent to climate change in recent decades. Knowledge about the modifying impacts of violent conflict on climate-malaria relationships remains limited. Here, we quantify the associations between violent conflict, climate variability, and malaria risk in sub-Saharan Africa using health surveys from 128,326 individuals, historical climate data, and 17,429 recorded violent conflicts from 2006 to 2017. We observe that spatial spillovers of violent conflict (SSVCs) have spatially distant effects on malaria risk. Malaria risk induced by SSVCs within 50 to 100 km from the households gradually increases from 0.1% (not significant, P>0.05) to 6.5% (95% CI: 0 to 13.0%). SSVCs significantly promote malaria risk within the average 20.1 to 26.9 °C range. At the 12-mo mean temperature of 22.5 °C, conflict deaths have the largest impact on malaria risk, with an approximately 5.8% increase (95% CI: 1.0 to 11.0%). Additionally, a pronounced association between SSVCs and malaria risk exists in the regions with 9.2 wet days per month. The results reveal that SSVCs increase population exposure to harsh environments, amplifying the effect of warm temperature and persistent precipitation on malaria transmission. Violent conflict therefore poses a substantial barrier to mosquito control and malaria elimination efforts in sub-Saharan Africa. Our findings support effective targeting of treatment programs and vector control activities in conflict-affected regions with a high malaria risk.


Assuntos
Exposição à Violência , Malária , Humanos , Malária/epidemiologia , África Subsaariana/epidemiologia , Temperatura
5.
JAMA Netw Open ; 7(4): e244592, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602679

RESUMO

Importance: Changes in cervical length in twin pregnancies exhibit various patterns, but it is unclear whether the mechanism underlying spontaneous preterm birth (sPTB) is consistent. The existence of detailed phenomena in singleton pregnancies is also unclear. Objectives: To explore the different patterns in cervical length trajectories in singleton and twin pregnancies and to analyze whether the immunological mechanisms of sPTB are consistent among these cervical length patterns. Design, Setting, and Participants: This cohort study recruited pregnant individuals who received antenatal care and delivered at Peking University Third Hospital in Beijing, China, between January 1, 2014, and December 31, 2022. Individuals with singleton and twin pregnancies were included. Exposures: Cervical length measurements and white blood cell (WBC) indicators. Main Outcomes and Measures: The primary outcome was sPTB. Longitudinal trajectory cluster analysis was used to identify patterns of changes in cervical length in singleton and twin pregnancies. A random-effects model with cubic spline was used to fit and compare the longitudinal trajectory of WBC indicators among early preterm birth, moderate to late preterm birth, and term birth. Results: A total of 43 559 pregnant individuals were included; of these, 41 706 had singleton pregnancies (mean [SD)] maternal age, 33.0 [4.0] years) and 1853 had twin pregnancies (mean [SD] maternal age, 33.3 [3.6] years). Two distinct patterns of cervical length changes were observed in both singleton and twin pregnancies: shortened (21 366 singletons and 546 twins) and stable (20 340 singletons and 1307 twins). In singleton pregnancies, WBC count was associated with early sPTB in individuals with both shortened cervix (odds ratio [OR], 1.35; 95% CI, 1.00-1.82) and stable cervix (OR, 1.64; 95% CI, 1.07-2.50). However, for twin pregnancies, the association of WBC count (OR, 3.13; 95% CI, 1.58-6.18) with the risk of early sPTB was observed only in individuals with a shortened cervix. Conclusions and Relevance: This study identified 2 distinct cervical length patterns: shortened and stable. These patterns revealed 2 preterm birth mechanisms in twin pregnancies, with the immunopathogenesis of sPTB found only in the shortened cervix pattern; in singleton pregnancies, maternal immune response was associated with a higher risk of sPTB regardless of a shortened or stable cervix.


Assuntos
Gravidez de Gêmeos , Nascimento Prematuro , Recém-Nascido , Gravidez , Humanos , Feminino , Adulto , Medida do Comprimento Cervical , Estudos de Coortes , Nascimento Prematuro/epidemiologia , China/epidemiologia
6.
Nanomaterials (Basel) ; 14(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607155

RESUMO

In this paper, a novel method was proposed for the synthesis of Cu2S on copper mesh via electrolysis in SRB culture medium. It was found that following electrolysis in SRB medium, squamous-like Cu2S arrays were obtained on the copper mesh, and the Cu2S loading contents varied with the electrolyzing parameters. The resultant Cu2S on copper mesh in SRB (CSCM-SRB) with the highest catalytic MB degradation properties was produced by electrolysis at 3.75 mA/cm2 for 900 s. The optimized MB-degrading conditions were determined to be 1.2 cm2/mL CSCM-SRB with 0.05 M H2O2 at 35 °C when pH = 6, under which the degradation of MB reached over 99% after 120 min of reaction. Disinfecting properties was also proven by antibacterial tests, revealing that an almost 100% antibacterial rate against E. coli was obtained after 8 min. The organic compounds produced by SRB adsorbed on CSCM-SRB strongly promoted the degradation of MB. Furthermore, possible Fenton-like mechanisms of CSCM-SRB were proposed, illustrating that ·O2-, ·OH, and 1O2 acted as the main functional species during Fenton-like reactions, leading to effective MB degradation and high antibacterial properties. Finally, a simple device for wastewater treatment was designed, providing possible applications in real environments.

7.
Nanomaterials (Basel) ; 14(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38607183

RESUMO

The injection and leakage of charge carriers have a significant impact on the optoelectronic performance of GaN-based lasers. In order to improve the limitation of the laser on charge carriers, a slope-shape hole-barrier layer (HBL) and electron-barrier layer (EBL) structure are proposed for near-UV (NUV) GaN-based lasers. We used Crosslight LASTIP for the simulation and theoretical analysis of the energy bands of HBL and EBL. Our simulations suggest that the energy bands of slope-shape HBL and EBL structures are modulated, which could effectively suppress carrier leakage, improve carrier injection efficiency, increase stimulated radiation recombination rate in quantum wells, reduce the threshold current, improve optical field distribution, and, ultimately, improve laser output power. Therefore, using slope-shape HBL and EBL structures can achieve the superior electrical and optical performance of lasers.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38613614

RESUMO

INTRODUCTION: In symptomatic patients with rotator cuff tear, MRI and radiographic studies have ascribed the pain symptom to insufficient humeral head depression during arm elevations. The arm adductors such as the teres major and pectoralis major may contribute to depression of the humerus head during arm elevations. Researchers have demonstrated that neuromuscular electrical stimulation (NMES) of the serratus anterior and lower trapezius can control scapular motions and improve acromiohumeral distance. It is unknown, however, if adductor neuromuscular training could help patients with rotator cuff tear. MATERIALS AND METHODS: A cross-sectional study of NMES of the teres major and pectoralis major was conducted on 30 symptomatic subjects with rotator cuff tear. We measured the acromiohumeral distance by ultrasonography and scapular kinematics during arm elevation with a three-dimensional motion tracking system. RESULTS: The acromiohumeral distance significantly increased during NMES of the teres major (0.73 mm, p < 0.001). However, the distance significantly decreased with NMES of the pectoralis major (0.78 mm, p < 0.001). Additionally, scapular upward rotation was greater during NMES of the teres major than during NMES of the pectoralis major (3.4°, p < 0.001). Scapular external rotation decreased significantly more during NMES of the pectoralis major than during NMES of the teres major (1.6°, p = 0.003). CONCLUSIONS: NMES of the teres major can increase acromiohumeral distance and scapular upward rotation during arm elevation. However, the decreased upward and external rotation of the scapula during arm elevation with NMES of the pectoralis major may be associated with subacromial impingement.

9.
J Biochem Mol Toxicol ; 38(4): e23689, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613465

RESUMO

Renal cell carcinoma (RCC) is the most common kidney cancer with high mortality rate. Pazopanib has been approved for the treatment of RCC. However, the underlying mechanism is not clear. Here, we report a novel finding by showing that treatment with Pazopanib could promote cellular senescence of the human RCC cell line ACHN. Cells were stimulated with 5, 10, and 20 µM Pazopanib, respectively. Cellular senescence was measured using senescence-associated ß-galactosidase (SA-ß-Gal) staining. Western blot analysis and real-time polymerase chain reaction were used to measure the mRNA and protein expression of nuclear factor E2-related factor 2 (Nrf2), γH2AX, human telomerase reverse transcriptase (hTERT), telomeric repeat binding factor 2 (TERF2), p53 and plasminogen activator inhibitor (PAI). First, we found that exposure to Pazopanib reduced the cell viability of ACHN cells. Additionally, Pazopanib induced oxidative stress  by increasing the production of reactive oxygen species, reducing the levels of glutathione peroxidase, and promoting nuclear translocation of Nrf2. Interestingly, Pazopanib exposure resulted in DNA damage by increasing the expression of γH2AX. Importantly, Pazopanib increased cellular senescence and reduced telomerase activity. Pazopanib also reduced the gene expression of hTERT but increased the gene expression of TERF2. Correspondingly, we found that Pazopanib increased the expression of p53 and PAI at both the mRNA and protein levels. To elucidate the underlying mechanism, the expression of Nrf2 was knocked down by transduction with Ad- Nrf2 shRNA. Results indicate that silencing of Nrf2 in ACHN cells abolished the effects of Pazopanib in stimulating cellular senescence and reducing telomerase activity. Consistently, knockdown of Nrf2 restored the expression of p53 and PAI in ACHN cells. Based on these results, we explored a novel mechanism whereby which Pazopanib displays a cytotoxicity effect in RCC cells through promoting cellular senescence mediated by Nrf2.


Assuntos
Carcinoma de Células Renais , Indazóis , Neoplasias Renais , Pirimidinas , Sulfonamidas , Telomerase , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Fator 2 Relacionado a NF-E2 , Telomerase/genética , Proteína Supressora de Tumor p53/genética , Neoplasias Renais/tratamento farmacológico , RNA Mensageiro
10.
Polymers (Basel) ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611189

RESUMO

Vaccines typically work by eliciting an immune response against larger antigens like polysaccharides or proteins. Small molecules like nicotine, on their own, usually cannot elicit a strong immune response. To overcome this, anti-nicotine vaccines often conjugate nicotine molecules to a carrier protein by carbodiimide crosslinking chemistry to make them polymeric and more immunogenic. The reaction is sensitive to conditions such as pH, temperature, and the concentration of reactants. Scaling up the reaction from laboratory to industrial scales while maintaining consistency and yield can be challenging. Despite various approaches, no licensed anti-nicotine vaccine has been approved so far due to the susboptimal antibody titers. Here, we report a novel approach to conjugate maleimide-modified nicotine hapten with a disulfide bond-reduced carrier protein in an organic solvent. It has two advantages compared with other approaches: (1) The protein was unfolded to make the peptide conformation more flexible and expose more conjugation sites; (2) thiol-maleimide "click" chemistry was utilized to conjugate the disulfide bond-reduced protein and maleimide-modified nicotine due to its availability, fast kinetics, and bio-orthogonality. Various nicotine conjugate vaccines were prepared via this strategy, and their immunology effects were investigated by using MPL and QS-21 as adjuvants. The in vivo study in mice showed that the nicotine-BSA conjugate vaccines induced high anti-nicotine IgG antibody titers, compared with vaccines prepared by using traditional condensation methods, indicating the success of the current strategy for further anti-nicotine or other small-molecule vaccine studies. The enhancement was more significant by using MPL and QS-21 than that of traditional aluminum adjuvants.

11.
Foods ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611372

RESUMO

Kaempferol is a natural flavonoid with reported bioactivities found in many fruits, vegetables, and medicinal herbs. However, its effects on exercise performance and muscle metabolism remain inconclusive. The present study investigated kaempferol's effects on improving exercise performance and potential mechanisms in vivo and in vitro. The grip strength, exhaustive running time, and distance of mice were increased in the high-dose kaempferol group (p < 0.01). Also, kaempferol reduced fatigue-related biochemical markers and increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) related to antioxidant capacity. Kaempferol also increased the glycogen and adenosine triphosphate (ATP) content in the liver and skeletal muscle, as well as glucose in the blood. In vitro, kaempferol promoted glucose uptake, protein synthesis, and mitochondrial function and decreased oxidative stress in both 2D and 3D C2C12 myotube cultures. Moreover, kaempferol activated the PI3K/AKT and MAPK signaling pathways in the C2C12 cells. It also upregulated the key targets of glucose uptake, mitochondrial function, and protein synthesis. These findings suggest that kaempferol improves exercise performance and alleviates physical fatigue by increasing glucose uptake, mitochondrial biogenesis, and protein synthesis and by decreasing ROS. Kaempferol's molecular mechanism may be related to the regulation of the PI3K/AKT and MAPK signaling pathways.

12.
Mikrochim Acta ; 191(5): 263, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619658

RESUMO

A green and sensitive ratio fluorescence strategy was proposed for the detection of formaldehyde (FA) in food based on a kind of metal-organic frameworks (MOFs), MIL-53(Fe)-NO2, and nitrogen-doped Ti3C2 MXene quantum dots (N-Ti3C2 MQDs) with a blue fluorescence at 450 nm. As a type of MOFs with oxidase-like activity, MIL-53(Fe)-NO2 can catalyze o-phenylenediamine (OPD) into yellow fluorescent product 2,3-diaminophenazine (DAP) with a fluorescent emission at 560 nm. DAP has the ability to suppress the blue light of N-Ti3C2 MQDs due to inner filter effect (IFE). Nevertheless, Schiff base reaction can occur between FA and OPD, inhibiting DAP production. This results in a weakening of the IFE which reverses the original fluorescence color and intensity of DAP and N-Ti3C2 MQDs. So, the ratio of fluorescence intensity detected at respective 450 nm and 560 nm was designed as the readout signal to detect FA in food. The linear range of FA detection was 1-200 µM, with a limit of detection of 0.49 µM. The method developed was successfully used to detect FA in food with satisfactory results. It indicates that MIL-53(Fe)-NO2, OPD, and N-Ti3C2 MQDs (MON) system constructed by integrating the mimics enzyme, enzyme substrate, and fluorescent quantum dots has potential application for FA detection in practical samples.


Assuntos
Estruturas Metalorgânicas , Fenilenodiaminas , Pontos Quânticos , Corantes Fluorescentes , Dióxido de Nitrogênio , Formaldeído
13.
Funct Plant Biol ; 512024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621016

RESUMO

Many studies have shown that multidrug and toxic compound extrusion (MATE) is a new secondary transporter family that plays a key role in secondary metabolite transport, the transport of plant hormones and disease resistance in plants. However, detailed information on this family in Gleditsia sinensis has not yet been reported. In the present study, a total of 45 GsMATE protein members were identified and analysed in detail, including with gene classification, phylogenetic evaluation and conserved motif determination. Phylogenetic analysis showed that GsMATE proteins were divided into six subfamilies. Additionally, in order to understand these members' regulatory roles in growth and development in G. sinensis , the GsMATEs expression profiles in different tissues and different developmental stages of thorn were examined in transcriptome data. The results of this study demonstrated that the expression of all MATE genes varies in roots, stems and leaves. Notably, the expression levels of GsMATE26 , GsMATE32 and GsMATE43 differ most in the early stages of thorn development, peaking at higher levels than in later stages. Our results provide a foundation for further functional characterisation of this important class of transporter family in G. sinensis .


Assuntos
Gleditsia , Gleditsia/genética , Gleditsia/metabolismo , Filogenia , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética
14.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1421-1428, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621925

RESUMO

To investigate the mechanism of action of aqueous extract of Strychni Semen(SA) on bone destruction in rats with type Ⅱ collagen-induced arthritis(CIA), the SD rats were randomly divided into normal group, model group, low, medium, and high dose(2.85, 5.70, and 11.40 mg·kg~(-1)) groups of SA, and methotrexate group. Except for the normal group, the CIA model was prepared for the other groups. After the second immunization, different doses of SA were given to the low, medium, and high dose groups of SA once a day, and the methotrexate group was given once every three days. 0.3% sodium hydroxymethylcellulose(CMC-Na) was given once a day to the normal and model groups for 28 d. The clinical score of arthritis was evaluated every three days. Micro computed tomography(Micro-CT) method was used to evaluate the degree of bone destruction. Histopathological changes in the joint tissue and the number of osteoclasts in CIA rats were evaluated by hematoxylin-eosin(HE) staining and tartrate-resistant acid phosphatase(TRAP) staining. The expression of interleukin-1ß(IL-1ß) in the joint tissue of rats was detected by immunohistochemistry. Western blot was used to detect key protein expression in mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathways in the joint tissue of rats. The results showed that different doses of SA were able to improve the red and swollen inflammatory joint and joint deformity in CIA rats to varying degrees, reduce the clinical score, inhibit synovial inflammation, vascular opacification, cartilage erosion, and bone destruction, and reduce the number of TRAP-positive cells in bone tissue. Micro-CT results showed that the SA was able to increase bone mineral density, bone volume fraction, trabecular reduce, and trabecular number and reduce bone surface/bone volume and trabecular separation/spacing. Different doses of SA could down-regulate the protein expression of IL-1ß, p-JNK, p-ERK, p-p38, PI3K, and p-Akt to varying degrees. In conclusion, SA can improve disease severity, attenuate histopathological and imaging changes in joints, and have osteoprotective effects in CIA rats, and its mechanism of action may be related to the inhibition of the overactivation of MAPK and PI3K/Akt signaling pathways.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Colágeno Tipo II , Metotrexato , Proteínas Proto-Oncogênicas c-akt , Sêmen , Microtomografia por Raio-X , Fosfatidilinositol 3-Quinases , Ratos Sprague-Dawley , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamente
16.
J Virol ; : e0029924, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557225

RESUMO

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is highly conserved in all sequenced baculovirus genomes, and it plays important roles in both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. In this study, we characterized a cellular CRM1-dependent nuclear export signal (NES) of AcMNPV Ac93. Bioinformatic analysis revealed that AcMNPV Ac93 may contain an NES at amino acids 115-125. Green fluorescent protein (GFP) fused to the NES (GFP:NES) of AcMNPV Ac93 is localized to the cytoplasm of transfected cells. Multiple point mutation analysis demonstrated that NES is important for the nuclear export of GFP:NES. Bimolecular fluorescence complementation experiments and co-immunoprecipitation assays confirmed that Ac93 interacts with Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits cellular CRM1-dependent nuclear export of GFP:NES. To determine whether the NES in AcMNPV Ac93 is important for the formation of intranuclear microvesicles, an ac93-null AcMNPV bacmid was constructed; the wild-type and NES-mutated Ac93 were reinserted into the ac93-null AcMNPV bacmid. Immunofluorescence analysis showed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in infected cells, while the construct containing point mutations at residues 123 and 125 of Ac93 resulted in a defect in budded virus production and the abolishment of intranuclear microvesicles. Together, these data demonstrate that Ac93 contains a functional NES, which is required for the production of progeny viruses and the formation of intranuclear microvesicles.IMPORTANCEAutographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is important for the formation of intranuclear microvesicles. However, how the baculovirus manipulates Ac93 for the formation of intranuclear microvesicles is unclear. In this study, we identified a nuclear export signal (NES) at amino acids 115-125 of AcMNPV Ac93. Our results showed that the NES is required for the interaction between Ac93 and Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits the nuclear export of green fluorescent protein fused to the NES. Our analysis revealed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in AcMNPV-infected cells. Together, our results indicate that Ac93 participates in the formation of intranuclear microvesicles via the Ac93 NES-mediated CRM1 pathway.

17.
Phytother Res ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558446

RESUMO

Bone is one of the most frequent sites for metastasis in breast cancer patients. Bone metastasis significantly reduces the survival time and the life quality of breast cancer patients. Germacrone (GM) can serve humans as an anti-cancer and anti-inflammation agent, but its effect on breast cancer-induced osteolysis remains unclear. This study aims to investigate the functions and mechanisms of GM in alleviating breast cancer-induced osteolysis. The effects of GM on osteoclast differentiation, bone resorption, F-actin ring formation, and gene expression were examined in vitro. RNA-sequencing and Western Blot were conducted to explore the regulatory mechanisms of GM on osteoclastogenesis. The effects of GM on breast cancer-induced osteoclastogenesis, and breast cancer cell malignant behaviors were also evaluated. The in vivo efficacy of GM in the ovariectomy model and breast cancer bone metastasis model with micro-CT and histomorphometry. GM inhibited osteoclastogenesis, bone resorption and F-actin ring formation in vitro. Meanwhile, GM inhibited the expression of osteoclast-related genes. RNA-seq analysis and Western Blot confirmed that GM inhibited osteoclastogenesis via inhibition of MAPK/NF-κB signaling pathways. The in vivo mouse osteoporosis model further confirmed that GM inhibited osteolysis. In addition, GM suppressed the capability of proliferation, migration, and invasion and promoted the apoptosis of MDA-MB-231 cells. Furthermore, GM could inhibit MDA-MB-231 cell-induced osteoclastogenesis in vitro and alleviate breast cancer-associated osteolysis in vivo human MDA-MB-231 breast cancer bone metastasis-bearing mouse models. Our findings identify that GM can be a promising therapeutic agent for patients with breast cancer osteolytic bone metastasis.

18.
J Ethnopharmacol ; : 118102, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561057

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoqinglong Decotion (XQLD) is a commonly used Chinese herbal formula in clinical practice, especially for allergic diseases such as asthma. However, its intrinsic mechanism for the treatment of neutrophilic asthma (NA) remains unclear. AIM OF THE STUDY: The aim of this study was to evaluate the efficacy and potential mechanisms of XQLD on NA using network pharmacology and in vivo experiments. MATERIALS AND METHODS: First, the active compounds, potential targets and mechanisms of XQLD against NA were initially elucidated by network pharmacology. Then, OVA/CFA-induced NA mice were treated with XQLD to assess its efficacy. Proteins were then analyzed and quantified using a Tandem Mass Tags approach for differentially expressed proteins (DEPs) to further reveal the mechanisms of NA treatment by XQLD. Finally, the hub genes, critical DEPs and potential pathways were validated. RESULTS: 176 active compounds and 180 targets against NA were identified in XQLD. Protein-protein interaction (PPI) network revealed CXCL10, CX3CR1, TLR7, NCF1 and FABP4 as hub genes. In vivo experiments showed that XQLD attenuated inflammatory infiltrates, airway mucus secretion and remodeling in the lungs of NA mice. Moreover, XQLD significantly alleviated airway neutrophil inflammation in NA mice by decreasing the expression of IL-8, MPO and NE. XQLD also reduced the levels of CXCL10, CX3CR1, TLR7, NCF1 and FABP4, which are closely associated with neutrophil inflammation. Proteomics analysis identified 28 overlapping DEPs in the control, NA and XQLD groups, and we found that XQLD inhibited ferroptosis signal pathway (elevated GPX4 and decreased ASCL3) as well as the expression of ARG1, MMP12 and SPP1, while activating the Rap1 signaling pathway. CONCLUSION: This study revealed that inhibition of ARG1, MMP12 and SPP1 expression as well as ferroptosis pathways, and activation of the Rap1 signaling pathway contribute to the therapeutic effect of XQLD on NA.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38561529

RESUMO

Porous carbon generated from biomass has a rich pore structure, is inexpensive, and has a lot of promise for use as a carbon material for energy storage devices. In this work, nitrogen-doped porous carbon was prepared by co-pyrolysis using bagasse as the precursor and chlorella as the nitrogen source. ZnCl2 acts as both an activator and a nitrogen fixer during activation to generate pores and reduce nitrogen loss. The thermal weight loss experiments showed that the pyrolysis temperatures of bagasse and chlorella overlap, which created the possibility for the synthesis of nitrogen-rich biochar. The optimum sample (ZBC@C-5) possessed a surface area of 1508 m2g-1 with abundant nitrogen-containing functional groups. ZBC@C-5 in the three-electrode system exhibited 244.1F/g at 0.5A/g, which was extremely close to ZBC@M made with melamine as the nitrogen source. This provides new opportunities for the use of low-cost nitrogen sources. Furthermore, the devices exhibit better voltage retention (39%) and capacitance retention (96.3%). The goal of this research is to find a low cost, and effective method for creating nitrogen-doped porous carbon materials with better electrochemical performance for highly valuable applications using bagasse and chlorella.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38561604

RESUMO

BACKGROUND: Cancer stem cells (CSC) play an important role in the development of Liver Hepatocellular Carcinoma (LIHC). However, the regulatory mechanisms between acetylation- associated genes (HAGs) and liver cancer stem cells remain unclear. OBJECTIVE: To identify a set of histone acetylation genes (HAGs) with close associations to liver cancer stem cells (LCSCs), and to construct a prognostic model that facilitates more accurate prognosis assessments for LIHC patients. METHODS: LIHC expression data were downloaded from the public databases. Using mRNA expression- based stemness indices (mRNAsi) inferred by One-Class Logistic Regression (OCLR), Differentially Expressed Genes (DEGs) (mRNAsi-High VS. mRNAsi-Low groups) were intersected with DEGs (LIHC VS. normal samples), as well as histone acetylation-associated genes (HAGs), to obtain mRNAsi-HAGs. A risk model was constructed employing the prognostic genes, which were acquired through univariate Cox and Least Shrinkage and Selection Operator (LASSO) regression analyses. Subsequently, independent prognostic factors were identified via univariate and multivariate Cox regression analyses and then a nomogram for prediction of LIHC survival was developed. Additionally, immune infiltration and drug sensitivity analysis were performed to explore the relationships between prognostic genes and immune cells. Finally, the expressions of selected mRNAsi-HAGs were validated in the LIHC tumor sphere by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) assay and western blot analysis. RESULTS: Among 13 identified mRNAsi-HAGs, 3 prognostic genes (HDAC1, HDAC11, and HAT1) were selected to construct a risk model (mRNAsi-HAGs risk score = 0.02 * HDAC1 + 0.09 * HAT1 + 0.05 * HDAC11). T-stage, mRNAsi, and mRNAsi-HAGs risk scores were identified as independent prognostic factors to construct the nomogram, which was proved to predict the survival probability of LIHC patients effectively. We subsequently observed strongly positive correlations between mRNAsi-HAGs risk score and tumor-infiltrating T cells, B cells and macrophages/monocytes. Moreover, we found 8 drugs (Mitomycin C, IPA 3, FTI 277, Bleomycin, Tipifarnib, GSK 650394, AICAR and EHT 1864) had significant correlations with mRNAsi-HAGs risk scores. The expression of HDAC1 and HDAC11 was higher in CSC-like cells in the tumor sphere. CONCLUSION: This study constructed a mRNAsi and HAGs-related prognostic model, which has implications for potential immunotherapy and drug treatment of LIHC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...